A comparison of polynomial evaluation schemes
نویسنده
چکیده
The goal of this paper is to analyze two polynomial evaluation schemes for multiple precision floating point arithmetic. Polynomials are used extensively in numerical computations (Taylor series for mathematical functions, root finding) but a rigorous bound of the error on the final result is seldom provided. We provide such an estimate for the two schemes and find how to reduce the number of operations required at run-time by a dynamic error analysis. This work is useful for floating point polynomial arithmetic.
منابع مشابه
TWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملPolynomial evaluation groupoids and their groups
In this paper, we show how certain metabelian groups can be found within polynomial evaluation groupoids. We show that every finite abelian group can beobtained as a polynomial evaluation groupoid.
متن کاملAn efficient symmetric polynomial-based key establishment protocol for wireless sensor networks
An essential requirement for providing secure services in wireless sensor networks is the ability to establish pairwise keys among sensors. Due to resource constraints on the sensors, the key establishment scheme should not create significant overhead. To date, several key establishment schemes have been proposed. Some of these have appropriate connectivity and resistance against key exposure, ...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملComparison of two integration schemes for a micropolar plasticity model
Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...
متن کامل